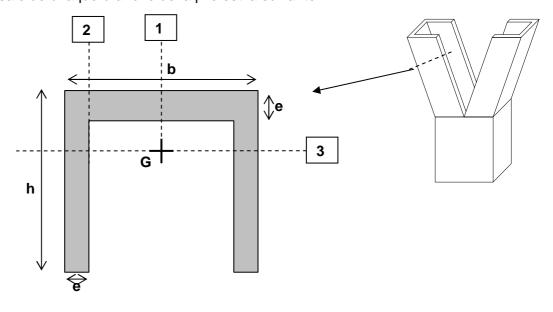

APPLICATION 4 CONTRAINTES TANGENTES

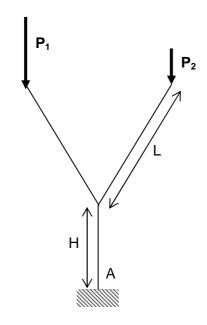

On étudie une pile de pont ayant une forme de Y :

Le tablier transmet à chacun des deux appuis de la pile des charges P_1 et P_2 (hypothèse : $P_1 \ge P_2$) verticales dirigées vers le bas. La pile est encastrée en pied.

- 1) Modéliser la structure et son chargement.
- 2) Déterminer le degré d'hyperstaticité de la structure et calculer les réactions d'appuis.
- 3) Calculer les sollicitations dans la structure et tracer les diagrammes associés.

La section transversale de chaque branche de la pile est la suivante :

- 4) Calculer les caractéristiques de la section (section, position du centre de gravité, inerties). Application numérique.
- 5) Dans un branche de la pile, déterminer les valeurs et les directions des contraintes de cisaillement obtenues dans les lignes de coupure 1, 2 et 3. Application numérique. Que dire de τ_3 , contrainte obtenue suivant la ligne de coupure 3 ?
- 6) La pile étant réalisée en béton armé, on cherche à limiter la contrainte de cisaillement à 4 MPa.

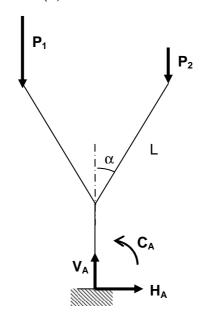

Pour cela, on décide d'augmenter l'épaisseur des voiles de la pile. Une épaisseur e = 80 cm est-elle suffisante ? Si cette épaisseur ne suffit pas, trouver la valeur de e minimale nécessaire en procédant par dichotomie par exemple.

Données numériques :

- L = 40 m
- H = 30 m
- h = 12 m
- b = 6m
- e = 0.65 m
- $\alpha = 20^{\circ}$
- $P_1 = P_2 = 200 \text{ MN}$

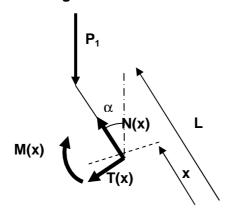
CORRIGÉ

1) Modélisation de la structure :


2) Degré d'hyperstaticité :

- encastrement → 3 inconnues
- 3 équations
- \rightarrow h = 0, structure isostatique

Réactions d'appuis


- H_A = 0
- $V_A = P_1 + P_2$ $P_1 * L \sin(\alpha) P_2 * L \sin(\alpha) + C_A = 0$

$$\rightarrow$$
 C_A = (P₂ - P₁) * L sin(α)

3) Sollicitations

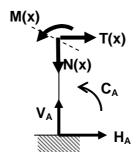
- **0** < **x** < **L** (origine des x à l'intersection des branches du y)
 - a) Branche de gauche

o
$$N - P_1 \cos(\alpha) = 0 \rightarrow N = P_1 \cos(\alpha)$$

o
$$T + P_1 \sin(\alpha) = 0 \rightarrow T = -P_1 \sin(\alpha)$$

o
$$M - P_1(L - x) \sin(\alpha) = 0 \rightarrow M = P_1(L - x) \sin(\alpha)$$

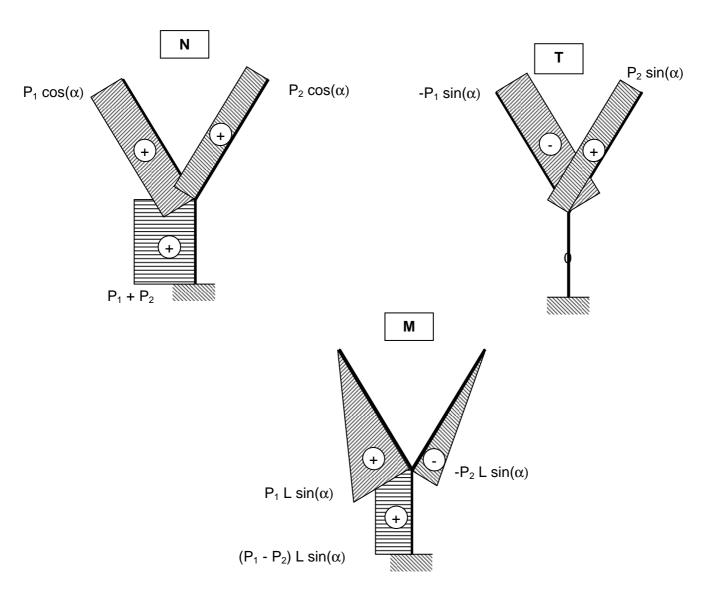
b) Branche de droite


Par identification avec le cas précédent :

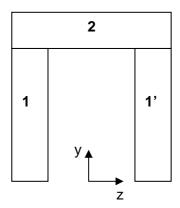
o
$$N = P_2 \cos(\alpha)$$

o
$$T = P_2 \sin(\alpha)$$

o
$$M = -P_2(L - x) \sin(\alpha)$$


• 0 < x < H (origine des x à l'encastrement)

$$O \quad N - V_A = 0 \rightarrow N = V_A = P_1 + P_2$$


$$\circ \quad \mathsf{T} + \mathsf{H}_\mathsf{A} = \mathsf{0} \to \mathsf{T} = \mathsf{0}$$

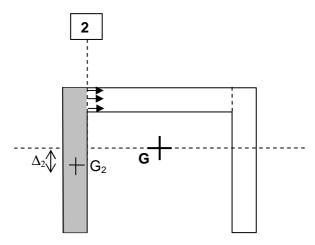
$$O M + C_A = 0 \rightarrow M = -C_A = (P_1 - P_2) * L \sin(\alpha)$$

4) Caractéristiques de la section

On subdivise la section de la manière suivante :

e	0.65 m
h	12.00 m
b	6.00 m

	b	h	S	y _{Gi}	m _{yi}	l _{zi}	z _{Gi}	l _{yi}
section	m	m	m²	m	m^3	m ⁴	m	m^4
1	0.65	11.35	7.38	5.68	41.87	316.80	2.68	53.05
1'	0.65	11.35	7.38	5.68	41.87	316.80	-2.68	53.05
2	6.00	0.65	3.90	11.68	45.53	531.73	0.00	11.70
Σ			18.66		129.27	1165.32		117.80


 $(I_{Gz} \text{ calculé avec le théorème de Huygens} : I_{Gz} = I_z - S^*y_q^2)$

5) Caractéristiques de la section

- ligne de coupure 1 :

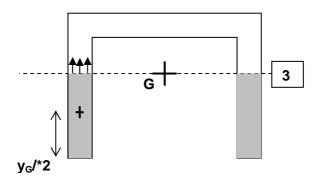
 $\tau_1 = 0$ car m(y) = 0 : la coupure 1 est confondue avec Gz, axe de symétrie de la section.

- ligne de coupure 2 :

On a pour la surface 2 grisée :

$$m(y) = S^*(y_G - y_{G,2}) = h^*e^*\Delta_2 = 7.25 \text{ m}^2$$

$$b(y) = 0.65m$$


Avec $\tau_2 = T^*m(y)/(I_z * b(y))$

Soit pour la section où T est maximal :

$$T_{max} = T \sin(\alpha) = 200 * \sin(20^\circ) = 68.4 MN$$

$$\tau_2$$
 = 68.4 * 7.25 / (269.6 * 0.65) = 2.83 MPa

- ligne de coupure 3 :

On a pour la surface grisée :

$$m(y) = S^*y_G/2 = y_G *2e * y_G /2 = e y_G^2$$

$$b(y) = 2 e$$

$$\tau_3 = T^* y_G^2 / (2 I_{Gz})$$

Soit pour la section où T est maximal :

$$\tau_3$$
= 68.4 * 6.93² / (2* 269.6) = 6.09 MPa

On coupe au niveau du CdG, c'est donc le cisaillement maximal dans la section.

6) Cisaillement dans le cas où e = 0.80 m

On recalcule la contrainte τ_3 , en n'oubliant pas de recalculer l'inertie de la section.

On trouve:

e 0.80 m h 12.00 m b 6.00 m

	b	h	S	y _{Gi}	m _{yi}	l _{zi}	z _{Gi}	l _{yi}
section	m	m	m²	m	m^3	m^4	m	m^4
1	0.80	11.20	8.96	5.60	50.18	374.65	2.60	61.05
1'	0.80	11.20	8.96	5.60	50.18	374.65	-2.60	61.05
2	6.00	0.80	4.80	11.60	55.68	646.14	0.00	14.40
Σ			22.72		156.03	1395.44		136.49

D'où $\tau_3 = 4.98 \text{ MPa} > 4 \text{ MPa}$.

Il faut encore augmenter l'épaisseur de la section.

Avec e = 1m, on a : e 1.00 m h 12.00 m b 6.00 m

	b	h	S	y _{Gi}	m _{yi}	l _{zi}	z _{Gi}	l _{yi}
section	m	m	m²	m	m^3	m^4	m	m ⁴
1	1.00	11.00	11.00	5.50	60.50	443.67	2.50	69.67
1'	1.00	11.00	11.00	5.50	60.50	443.67	-2.50	69.67
2	6.00	1.00	6.00	11.50	69.00	794.00	0.00	18.00
Σ			28.00		190.00	1681.33		157.33

 $\begin{array}{lll} S & 28.00 \text{ m}^2 \\ \text{V_G} & 6.79 \text{ m} \\ \text{I_{Gz}} & 392.05 \text{ m}^4 \\ \text{I_{Gy}} & 157.33 \text{ m}^4 \end{array}$

D'où τ_3 = 4.0 MPa. Une épaisseur de 1m convient.